Skip to main content
Log in

Charge transport in polythiophene molecular device: DFT analysis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We report the charge transport phenomenon in polythiophene molecular device and the ways of controlling the nature of charge transport through the device. By using density functional theory (DFT) and non-equilibrium Green’s function (NEGF) formalisms, two ways of controlling the nature of charge transport have successfully been demonstrated by introducing conformational changes in the channel and applying external gate potential. Functional groups with negative mesomeric effect such as nitrous and carboxyl and positive mesomeric effect such as amino have been used as substituents as part of introducing conformational changes in the channel. The results indicate that the nature of charge transport in polythiophene molecular device can be changed from hole dominant to electron dominant and vice versa just by introducing minor conformational changes in the channel and by changing the polarity of external gate potential. Moreover, the negative differential resistance (NDR) behavior has been observed in amino-substituted thiophene device. These findings will be very useful in understanding the design of both p and n-type transistors out of same molecule for the next-generation molecular electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All the related information is given in the manuscript and reference section.

References

  1. Halbritter A, Sz C, Mihaly G, Jurdik E, Kolesnychenko OY, Shklyarevskii OI, Speller S, van Kempen H (2003) Transition from tunneling to direct contact in tungsten nanojunctions. Phys. Rev. B 68(3):035417. https://doi.org/10.1103/PhysRevB.68.035417

    Article  CAS  Google Scholar 

  2. Nitzan A, Ratner MA (2003) Electron transport in molecular wire junctions. Science 300(5624):1384–1389. https://doi.org/10.1126/science.1081572

    Article  CAS  PubMed  Google Scholar 

  3. Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Conductance of a molecular junction. Science 278(5336):252–254. https://doi.org/10.1126/science.278.5336.252

    Article  CAS  Google Scholar 

  4. Ulman, Abraham. Formation and structure of self-assembled monolayers. Chem. Rev. 96, no. 4 (1996): 1533–1554. https://doi.org/10.1021/cr9502357

  5. Du Y, Pan H, Wang S, Wu T, Feng YP, Pan J, Wee ATS (2012) Symmetrical negative differential resistance behavior of a resistive switching device. ACS Nano 6(3):2517–2523. https://doi.org/10.1021/nn204907t

    Article  CAS  PubMed  Google Scholar 

  6. Zheng X, Lu W, Abtew TA, Meunier V, Bernholc J (2010) Negative differential resistance in C60-based electronic devices. ACS Nano 4(12):7205–7210. https://doi.org/10.1021/nn101902r

    Article  CAS  PubMed  Google Scholar 

  7. Ratner MA, Aviram A (1974) Molecular rectifiers. Chem. Phys. Lett. 29(2):277–283. https://doi.org/10.1016/0009-2614(74)85031-1

    Article  Google Scholar 

  8. Metzger RM (2003) Unimolecular electrical rectifiers. Chem. Rev. 103(9):3803–3834. https://doi.org/10.1021/cr020413d

    Article  CAS  PubMed  Google Scholar 

  9. Zeng J, Chen K-Q, He J, Zhang X-J, Sun CQ (2011) Edge hydrogenation-induced spin-filtering and rectifying behaviors in the graphene nanoribbon heterojunctions. J. Phys. Chem. C 115(50):25072–25076. https://doi.org/10.1021/jp208248v

    Article  CAS  Google Scholar 

  10. Montiel F, Fomina L, Fomine S (2015) Charge transfer complexes of fullerene [60] with porphyrins as molecular rectifiers. A theoretical study. J. Mol. Model. 21(1):4

    Article  Google Scholar 

  11. Mahmoud A, Lugli P (2012) Designing the rectification behavior of molecular diodes. J. Appl. Phys. 112(11):113720. https://doi.org/10.1063/1.4768924

    Article  CAS  Google Scholar 

  12. Zeng, Jing, Ke-Qiu Chen, Jun He, Xiao-Jiao Zhang, and W. P. Hu. Rectifying and successive switch behaviors induced by weak intermolecular interaction. Org. Electron. 12, no. 10 (2011): 1606–1611. DOI: https://doi.org/10.1016/j.orgel.2011.06.010

  13. Kiguchi, Manabu, Tatsuhiko Ohto, Shintaro Fujii, Kazunori Sugiyasu, Shigeto Nakajima, Masayuki Takeuchi, and Hisao Nakamura. Single molecular resistive switch obtained via sliding multiple anchoring points and varying effective wire length. Journal of the American Chemical Society 136, no. 20 (2014): 7327–7332. DOI: https://doi.org/10.1021/ja413104g

  14. Larik, Fayaz Ali, Muhammad Faisal, Aamer Saeed, Qamar Abbas, Mehar Ali Kazi, Nadir Abbas, Akbar Ali Thebo, Dost Muhammad Khan, and Pervaiz Ali Channar. Thiophene-based molecular and polymeric semiconductors for organic field effect transistors and organic thin film transistors. Journal of Materials Science: Materials in Electronics 29, no. 21 (2018): 17975–18010

  15. Kwon O, McKee ML (2000) Calculations of band gaps in polyaniline from theoretical studies of oligomers. J. Phys. Chem. B 104(8):1686–1694

    Article  CAS  Google Scholar 

  16. Ma, Chang-Qi, Elena Mena-Osteritz, Tony Debaerdemaeker, Martijn M. Wienk, René AJ Janssen, and Peter Bäuerle. Functionalized 3D oligothiophene dendrons and dendrimers—novel macromolecules for organic electronics. Angewandte Chemie 119, no. 10 (2007): 1709–1713. DOI: https://doi.org/10.1002/ange.200602653

  17. Rittmeyer SP, Groß A (2012) Structural and electronic properties of oligo-and polythiophenes modified by substituents. Beilstein journal of nanotechnology 3:909. https://doi.org/10.3762/bjnano.3.101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maliakal A, Raghavachari K, Katz H, Chandross E, Siegrist T (2004) Photochemical stability of pentacene and a substituted pentacene in solution and in thin films. Chem. Mater. 16(24):4980–4986

    Article  CAS  Google Scholar 

  19. Coppo P, Yeates SG (2005) Shining light on a pentacene derivative: the role of photoinduced cycloadditions. Adv. Mater. 17(24):3001–3005

    Article  CAS  Google Scholar 

  20. Carraher Jr, Charles E. Seymour/Carraher’s polymer chemistry. Vol. 16. CRC press, 2003

  21. Lee, Jeong-O., Günther Lientschnig, Frank Wiertz, Martin Struijk, Réne AJ Janssen, Richard Egberink, David N. Reinhoudt, Peter Hadley, and Cees Dekker. Absence of strong gate effects in electrical measurements on phenylene-based conjugated molecules. Nano Letters 3, no. 2 (2003): 113–117. DOI:https://doi.org/10.1021/nl025882

  22. Matsushita R, Kaneko S, Nakazumi T, Kiguchi M (2011) Effect of metal-molecule contact on electron-vibration interaction in single hydrogen molecule junction. Phys. Rev. B 84(24):245412. https://doi.org/10.1103/PhysRevB.84.24541

    Article  Google Scholar 

  23. Reddinger, Jerry L., and John R. Reynolds. Molecular engineering of π-conjugated polymers. In Radical Polymerisation Polyelectrolytes, pp. 57–122. Springer, Berlin, Heidelberg, 1999. DOI: https://doi.org/10.1007/3-540-70733-6_2

  24. Hou, D., and J. H. Wei. The difficulty of gate control in molecular transistors. arXiv preprint arXiv:1109.5940 (2011). DOI: arxiv1109.5940

  25. Xu Y, Fang C, Cui B, Ji G, Zhai Y, Liu D (2011) Gated electronic currents modulation and designs of logic gates with single molecular field effect transistors. Appl. Phys. Lett. 99(4):145. https://doi.org/10.1063/1.3615691

    Article  CAS  Google Scholar 

  26. Mahmoud, Ahmed, and Paolo Lugli. Transport characterization of a gated molecular device with negative differential resistance. In Nanotechnology (IEEE-NANO), 2012 12th IEEE Conference on, pp. 1–5. IEEE, 2012. DOI: https://doi.org/10.1109/NANO.2012.6321941

  27. Song H, Kim Y, Jang YH, Jeong H, Reed MA, Lee T (2009) Observation of molecular orbital gating. Nature 462(7276):1039. https://doi.org/10.1038/nature08639

    Article  CAS  PubMed  Google Scholar 

  28. Brandbyge, Mads, José-Luis Mozos, Pablo Ordejón, Jeremy Taylor, and Kurt Stokbro. Density-functional method for nonequilibrium electron transport. Physical Review B 65, no. 16 (2002): 165401. DOI: https://doi.org/10.1103/PhysRevB.65.165401

  29. QuantumATK version Q-2016.4, Synopsys QuantumATK (https://www.synopsys.com/silicon/quantumatk.html)

  30. Datta, Supriyo. Quantum transport: atom to transistor. Cambridge university press, 2005

  31. Johannes G. Vos, Robert J. Forster, and Tia E. Keyes. Interfacial supramolecular assemblies. John Wiley & Sons (2003). DOI: https://doi.org/10.1002/0470861517

  32. Liu, Zhen-Fei, and Jeffrey B. Neaton. Communication: energy-dependent resonance broadening in symmetric and asymmetric molecular junctions from an ab initio non-equilibrium Green’s function approach. (2014): 131104

  33. Jiang, Zhuoling, Hao Wang, Yongfeng Wang, Stefano Sanvito, and Shimin Hou. Tailoring the polarity of charge carriers in graphene–porphine–graphene molecular junctions through linkage motifs. The Journal of Physical Chemistry C 121, no. 49 (2017): 27344–27350. DOI: https://doi.org/10.1021/acs.jpcc.7b09847

  34. Kerber RC (2006) If it’s resonance, what is resonating? J. Chem. Educ. 83(2):223. https://doi.org/10.1021/ed083p223

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Atal Bihari Vajpayee - Indian Institute of Information Technology and Management, Gwalior, for the infrastructural facilities provided to carrying out the present research work. One of us, Ankit Sirohi, is thankful to MHRD for a gate fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally in the reported work. Specifically the concept designing, analysis, and editing were done by Anurag Srivastava and Boddepalli SanthiBhushan, whereas the computation and initial writing were done by Ankit Sirohi.

Corresponding author

Correspondence to Anurag Srivastava.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

I, Anurag Srivastava, on behalf of all the authors, give consent for the publication of this work.

Competing interests

The authors declare no competing interests.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirohi, A., SanthiBhushan, B. & Srivastava, A. Charge transport in polythiophene molecular device: DFT analysis. J Mol Model 27, 77 (2021). https://doi.org/10.1007/s00894-021-04680-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04680-w

Keywords

Navigation